

CALCULATE AREA

Square

 $A = a^2$, in which a is one of the sides.

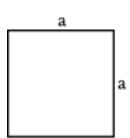
Rectangle

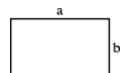
A = ab, in which a is the base and b is the length.

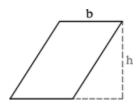
Parallelogram

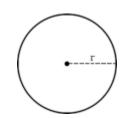
A = bh, in which b is the base and h is the height

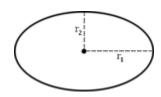
Circle

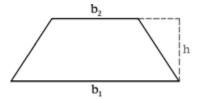

 $A = pr^2$, in which p is 3.1416 and r is the radius.

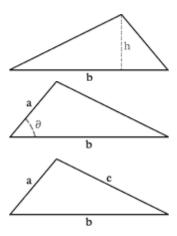

Ellipse


A = pr_1r_2 , in which p is 3.1416, r_1 is the longer radius, and r_2 is the shorter radius


Trapezoid


A = $(h[b_1 + b_2])/2$, in which h is the height, b_1 is the longer parallel side, and b_2 is the shorter parallel side




Triangle

Given base and height: A = (1/2)bh, in which b is the base and h is the height

Given side, angle, side (SAS): (1/2) ab x sin?, in which α is one side, b is another side, and? is the known angle

Given three sides:

$$\sqrt{(s[s-a][s-b][s-c])}$$
 when $s=(a+b+c)/2$ (Heron's formula), in which a, b, and c represent the three sides

